Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We perform a thermodynamic analysis of the energetic cost of CO 2 separation from flue gas (0.1 bar CO 2 (g)) and air (400 ppm CO 2 ) using a pH swing created by electrochemical redox reactions involving proton-coupled electron transfer from molecular species in aqueous electrolyte. In this scheme, electrochemical reduction of these molecules results in the formation of alkaline solution, into which CO 2 is absorbed; subsequent electrochemical oxidation of the reduced molecules results in the acidification of the solution, triggering the release of pure CO 2 gas. We examined the effect of buffering from the CO 2 –carbonate system on the solution pH during the cycle, and thereby on the open-circuit potential of an electrochemical cell in an idealized four-process CO 2 capture-release cycle. The minimum work input varies from 16 to 75 kJ mol CO2 −1 as throughput increases, for both flue gas and direct air capture, with the potential to go substantially lower if CO 2 capture or release is performed simultaneously with electrochemical reduction or oxidation. We discuss the properties required of molecules that would be suitable for such a cycle. We also demonstrate multiple experimental cycles of an electrochemical CO 2 capture and release system using 0.078 M sodium 3,3′-(phenazine-2,3-diylbis(oxy))bis(propane-1-sulfonate) as the proton carrier in an aqueous flow cell. CO 2 capture and release are both performed at 0.465 bar at a variety of current densities. When extrapolated to infinitesimal current density we obtain an experimental cycle work of 47.0 kJ mol CO2 −1 . This result suggests that, in the presence of a 0.465 bar/1.0 bar inlet/outlet pressure ratio, a 1.9 kJ mol CO2 −1 thermodynamic penalty should add to the measured value, yielding an energy cost of 48.9 kJ mol CO2 −1 in the low-current-density limit. This result is within a factor of two of the ideal cycle work of 34 kJ mol CO2 −1 for capturing at 0.465 bar and releasing at 1.0 bar. The ideal cycle work and experimental cycle work values are compared with those for other electrochemical and thermal CO 2 separation methods.more » « less
-
SiC and Ga 2 O 3 are promising wide band gap semiconductors for applications in power electronics because of their high breakdown electric field and normally off operation. However, lack of a suitable dielectric material that can provide high interfacial quality remains a problem. This can potentially lead to high leakage current and conducting loss. In this work, we present a novel atomic layer deposition process to grow epitaxially Mg x Ca 1− x O dielectric layers on 4H-SiC(0001) and β-Ga 2 O 3 $$\left( {\bar 201} \right)$$ substrates. By tuning the composition of Mg x Ca 1− x O toward the substrate lattice constant, better interfacial epitaxy can be achieved. The interfacial and epitaxy qualities were investigated and confirmed by cross-sectional transmission electron microscopy and X-ray diffraction studies. Mg 0.72 Ca 0.28 O film showed the highest epitaxy quality on 4H-SiC(0001) because of its closest lattice match with the substrate. Meanwhile, highly textured Mg 0.25 Ca 0.75 O films can be grown on β-Ga 2 O 3 $$\left( {\bar 201} \right)$$ with a preferred orientation of (111).more » « less
-
null (Ed.)We demonstrate the electrochemical oxidation of an anthracene derivative to a redox-active anthraquinone at room temperature in a flow cell without the use of hazardous oxidants or noble metal catalysts. The anthraquinone, generated in situ , was used as the active species in a flow battery electrolyte without further modification or purification. This potentially scalable, safe, green, and economical electrosynthetic method is also applied to another anthracene-based derivative and may be extended to other redox-active aromatics.more » « less
-
Many microelectronic devices require thin films of silver or gold as wiring layers. We report silver( i ) and gold( i ) bicyclic amidinate complexes, wherein the constrained ligand geometry lessens the propensity for thermal decomposition. These new volatile compounds provide metallic films of silver and gold during CVD with hydrogen below 230 °C.more » « less
An official website of the United States government
